
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 07 – Strings and Lists

Prof. Katherine Gibson

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/code/

www.umbc.edu

Last Class We Covered

• One-way, two-way, and multi-way decision
structures

– if, if-else, and if-elif-else statements

• Control structures (review)

• Conditional operators (review)

• Boolean data type (review)

• Coding algorithms using decision structures

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To discuss the usage of eval() and the
potential security concerns

• To learn about lists and what they are used for

• To better understand the string data type

– Learn how they are represented

– Learn about and use some of their built-in functions

• To be able to apply string formatting to produce
attractive, informative program output

4

www.umbc.edu

About eval()

www.umbc.edu

Previous Uses of eval()

• Remember our temperature converter?

6

def main():

 celsius = eval(input("What is the Celsius temperature? "))

 fahrenheit = 9/5 * celsius + 32

 print("The temperature is ", fahrenheit,

 " degrees Fahrenheit.")

main()

What does eval do?

www.umbc.edu

The Problem with eval()

• eval() interprets a string as code

• It lets a Python program run Python code
within itself

• In our example, we use it to let Python decide
what data type to store the input as

– If the user gives us an integer, store it as an int

– If the user gives us a decimal, store it as a float

• Using eval() is a security hole.

7 http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do

www.umbc.edu

The Problem with eval()

• But if the user gives us a malicious command
to delete files or folders, it may also run that

• If you have os imported, and you ask for
input using eval(input()), someone
could type malicious code like in response
– os.system('rm hw1.py')

– This would delete your hw1.py file!

8 http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do

www.umbc.edu

What to Do Instead?

• Instead of using eval() to cast strings…

• Use the exact type you want to cast to:
– int(input())

– float(input())

9 http://stackoverflow.com/questions/9383740/what-does-pythons-eval-do

www.umbc.edu

Fixing the Temperature Converter

10

def main():

 celsius = float(input("What is the Celsius temperature? "))

 fahrenheit = 9/5 * celsius + 32

 print("The temperature is ", fahrenheit,

 " degrees Fahrenheit.")

main()

Changed to a float cast

www.umbc.edu

Introduction to Lists

www.umbc.edu

Exercise: Average Three Numbers

• Read in three numbers and average them
num1 = int(input("Please enter a number: "))

num2 = int(input("Please enter a number: "))

num3 = int(input("Please enter a number: "))

print((num1 + num2 + num3) / 3)

• Easy! But what if we want to do 100
numbers? Or 1000 numbers?

• Do we want to make 100 or 1000 variables?

12

www.umbc.edu

Using Lists

• Need an easy way to hold onto individual data
items without needing to make lots of variables

– Making num1, num2, …, num99, num100
is time-consuming and impractical

• Instead, we can use a list to hold our data

–A list is a data structure: something that
holds multiple pieces of data in one structure

13

www.umbc.edu

Using Lists: Individual Variables

• We need an easy way to refer to each individual
variable in our list

– Math uses subscripts (x1, x2, x3, etc.)

– Instructions use numbers (“Step 1: Combine…”)

• Programming languages use a different syntax

– x[1], x[0], instructions[1], point[i]

14

www.umbc.edu

Numbering in Lists

• Lists don’t start counting from 1

– They start counting from 0!

• Lists with n elements are numbered from 0 to n-1

– The list below has 5 elements, and is
numbered from 0 to 4

15

0 1 2 3 4

www.umbc.edu

Properties of a List

• Heterogeneous (any data type!)

• Contiguous (all together in memory)

• Ordered (numbered from 0 to n-1)

• Have random (instant) access to any element

• Add elements using the append method

• They’re “mutable sequences of arbitrary objects”

16

www.umbc.edu

List Syntax

• Use [] to assign initial values (initialization)

myList = [1, 3, 5]

words = ["Hello", "to", "you"]

• And to refer to individual elements of a list
>>> print(words[0])

Hello

>>> myList[0] = 2

17

www.umbc.edu

List Example: Grocery List

• You are getting ready to head to the grocery
store to get some much needed food

• In order to organize your trip and to reduce
the number of impulse buys, you decide to
make a grocery list

18

www.umbc.edu

List Example: Grocery List

• Inputs:

–3 items for grocery list

• Process:

– Store grocery list using list data structure

• Output:

–Grocery list

19

www.umbc.edu

Grocery List Code
def main():

 print("Welcome to the Grocery Manager 1.0")

 // initialize the value and the size of our list

 grocery_list = [None]*3

 grocery_list[0] = input("Please enter your first item: ")

 grocery_list[1] = input("Please enter your second item: ")

 grocery_list[2] = input("Please enter your third item: ")

 print(grocery_list[0])

 print(grocery_list[1])

 print(grocery_list[2])

main()

20

www.umbc.edu

Grocery List Demonstration
• Here’s a demonstration

of what the code is doing

bash-4.1$ python groceries.py

Please enter your first item: milk

Please enter your second item: eggs

Please enter your third item: oil

milk

eggs

oil

21

0 1 2

milk eggs oil

grocery_list[0] = input("Please enter ...: ")

grocery_list[1] = input("Please enter ...: ")

grocery_list[2] = input("Please enter ...: ")

print(grocery_list[0])

print(grocery_list[1])

print(grocery_list[2])

www.umbc.edu

List Example: Grocery List

• What would make this process easier?

• Loops!

– Instead of asking for each item individually, we
could keep adding items to the list until we
wanted to stop (or the list was “full”)

• We will learn more about loops in the next
couple of classes

 22

www.umbc.edu

Strings

www.umbc.edu

The String Data Type

• Text is represented in programs by
the string data type

• A string is a sequence of characters enclosed
within quotation marks (") or apostrophes (')

– Sometimes called double quotes or single quotes

• FUN FACT! – The most common use of
personal computers is word processing

24

www.umbc.edu

String Examples
>>> str1 = "Hello"

>>> str2 = 'spam'

>>> print(str1, str2)

Hello spam

>>> type(str1)

<class 'str'>

>>> type(str2)

<class 'str'>

25

www.umbc.edu

Getting Strings as Input

• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")

Please enter your name: Shakira

>>> print("Hello", firstName)

Hello Shakira

>>> type(firstName)

<class 'str'>

>>> print(firstName, firstName)

Shakira Shakira

 26

www.umbc.edu

Accessing Individual Characters

• We can access the individual characters
in a string through indexing

• The characters in a string are numbered
starting from the left, beginning with 0

–Does that remind you of anything?

27

www.umbc.edu

Syntax of Accessing Characters

• The general form is

STRING[EXPR]

• Where STRING is the name of the string
variable and EXPR determines which
character is selected from the string

28

www.umbc.edu

Example String

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

29

0 1 2 3 4 5 6 7 8

H e l l o B o b

www.umbc.edu

Example String

30

0 1 2 3 4 5 6 7 8

H e l l o B o b

• In a string of n characters, the last character is at
position n-1 since we start counting with 0

• Index from the right side using negative indexes
>>> greet[-1]

'b'

>>> greet[-3]

'B'

www.umbc.edu

Substrings and Slicing

www.umbc.edu

Substrings

• Indexing only returns a single character
from the entire string

• We can access a substring using
a process called slicing

– Substring: a (sub)part of another string

– Slicing: we are slicing off a portion of the string

32

www.umbc.edu

Slicing Syntax

• The general form is

STRING[START:END]

• START and END must both be integers

– The substring begins at index START

– The substring ends before index END

• The letter at index END is not included

33

www.umbc.edu

Slicing Examples

34

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[0:3]

'Hel'

>>> greet[5:9]

' Bob'

>>> greet[:5]

'Hello'

>>> greet[1:]

'ello Bob'

>>> greet[:]

'Hello Bob'

www.umbc.edu

Specifics of Slicing

• If START or END are missing, then the
start or the end of the string are used instead

• The index of END must come after
the index of START

– What would the substring greet[1:1] be?

''

– An empty string!

35

www.umbc.edu

More Slicing Examples

36

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[2:-3]

'llo '

>>> greet[-6:-2]

'lo B'

>>> greet[-6:6]

'lo '

>>> greet[-9:8]

'Hello Bo'

-9 -8 -7 -6 -5 -4 -3 -2 -1

www.umbc.edu

Forming New Strings - Concatenation

• We can put two or more strings together to
form a longer string

• Concatenation “glues” two strings together
>>> "Peanut Butter" + "Jelly"

'Peanut ButterJelly'

>>> "Peanut Butter" + " & " + "Jelly"

'Peanut Butter & Jelly'

37

www.umbc.edu

Forming New Strings - Repetition

• Concatenating the same string together
multiple times can be done with repetition

– Which operator would you use for this?

>>> animal = "dogs"

>>> animal*3

'dogsdogsdogs'

>>> animal*8

'dogsdogsdogsdogsdogsdogsdogsdogs'

38

www.umbc.edu

Practice: Spam and Eggs
>>> "spam" + "eggs"

'spameggs'

>>> "Spam" + "And" + "Eggs"

'SpamAndEggs'

>>> 3 * "spam"

'spamspamspam'

>>> "spam" * 5

'spamspamspamspamspam'

>>> (3 * "spam") + ("eggs" * 5)

'spamspamspameggseggseggseggseggs'

39

www.umbc.edu

Length of a String

• To get the length of a string, use len()

>>> title = "CMSC 201"

>>> len(title)

8

>>> len("Help I'm trapped in here!")

24

• Why would we need the length of a string?

40

www.umbc.edu

String Operators in Python

Operator Meaning

+

*

STRING[#]

STRING[#:#]

len(STRING)

41

for VAR in STRING Iteration

Concatenation

Repetition

Indexing

Slicing

Length

We’ll cover this next class, when we learn for loops!

www.umbc.edu

Just a Bit More on Strings

• Python has many, many ways to interact with
strings, and we will cover them in detail soon

• For now, here are two very useful functions:

s.lower() – copy of s in all lowercase letters

s.upper() – copy of s in all uppercase letters

• Why would we need to use these?

–Remember, Python is case-sensitive!

42

www.umbc.edu

String Processing Examples

www.umbc.edu

Example: Creating Usernames

• Our rules for creating a username:

– First initial, first 7 characters of last name (lowercase)

get user’s first and last names

first = input("Please enter your first name: ")

last = input("Please enter your last name: ")

concatenate first initial with 7 chars of last name

uname = first[0].lower() + last[:7].lower()

print("Your username is: ", uname)

 44

Why is this 7?

www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")

Please enter your first name: Donna

>>> last = input("Please enter your last name: ")

Please enter your last name: Rostenkowski

>>> uname = first[0] + last[:7]

>>> print("Your username is: ", uname)

Your username is DRostenk

>>> uname = first[0].lower() + last[:7].lower()

>>> print("Your username is: ", uname)

Your username is drostenk

45

Usernames must be lowercase!

www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")

Please enter your first name: Barack

>>> last = input("Please enter your last name: ")

Please enter your last name: Obama

>>> uname = first[0].lower() + last[:7].lower()

>>> print("Your username is: ", uname)

Your username is bobama

• What would happen if we did last[7]?

– IndexError – but why does last[:7] work?

46

www.umbc.edu

Example: Printing the Months

• Given an integer (from 1 to 12) print the
three letter abbreviation for that month

• Start by storing all the names in one big string:
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

• Use the number of the month to get the right
“slice” of the months string

47

www.umbc.edu

Example: Printing the Months

• Let’s figure out the position for each month name:
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

 0123456789 5 5 5

48

Month Jan Feb Mar Apr May Jun

Num 1 2 3 4 5 6

Pos

Month Jul Aug Sep Oct Nov Dec

Num 7 8 9 10 11 12

Pos 18 21 24 27 30 33

0 3 6 9 12 15

www.umbc.edu

Example: Printing the Months

• Notice a pattern?

• To get the position, subtract 1 from the
month’s number and multiply by 3

pos = (num-1) * 3

• Use it to get the month name from the string

49

Month Jan Feb Mar Apr

Num 1 2 3 4

Pos 0 3 6 9

www.umbc.edu

Example: Printing the Months
def main():

 months = "JanFebMarAprMayJunJulAugSepOctNovDec"

 n = int(input("Enter a month number (1-12): "))

 # compute starting position of month n in months

 pos = (n-1) * 3

 # grab the appropriate slice from months

 monthAbbrev = months[pos:pos+3]

 # print the result

 print ("The month abbreviation is", monthAbbrev)

main()

50

www.umbc.edu

Example: Printing the Months
bash-4.1$ python months.py

Enter a month number (1-12): 1

The month abbreviation is Jan

bash-4.1$ python months.py

Enter a month number (1-12): 12

The month abbreviation is Dec

bash-4.1$ python months.py

Enter a month number (1-12): 100

The month abbreviation is

51

What
happened?

months[297:300]

There’s nothing
there in the string!

www.umbc.edu

Announcements

• Your Lab 4 is meeting normally this week!

– Make sure you attend your correct section

• Homework 3 is out

– Due by Thursday (Sept 24th) at 8:59:59 PM

• Homeworks are on Blackboard

– Weekly Agendas are also on Blackboard

52

